Cannot install the best candidate for the job for CUDA Drivers and Rocky Linux 8.5

I follow the blog Installing Nvidia Drivers on Rocky Linux 8.5. But I encountered an error that I have not encountered before

Error:
 Problem 1: package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64
 Problem 2: package cuda-drivers-515.48.07-1.x86_64 requires nvidia-kmod >= 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64
 Problem 3: package nvidia-driver-3:515.48.07-1.el8.x86_64 requires nvidia-kmod-common = 3:515.48.07, but none of the providers can be installed
  - package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64
 Problem 4: package nvidia-driver-3:515.48.07-1.el8.x86_64 requires nvidia-kmod-common = 3:515.48.07, but none of the providers can be installed
  - package nvidia-modprobe-3:515.48.07-1.el8.x86_64 requires nvidia-driver(x86-64) = 3:515.48.07, but none of the providers can be installed
  - package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64
 Problem 5: package nvidia-driver-3:515.48.07-1.el8.x86_64 requires nvidia-kmod-common = 3:515.48.07, but none of the providers can be installed
  - package nvidia-settings-3:515.48.07-1.el8.x86_64 requires nvidia-driver(x86-64) = 3:515.48.07, but none of the providers can be installed
  - package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64
 Problem 6: package nvidia-driver-3:515.48.07-1.el8.x86_64 requires nvidia-kmod-common = 3:515.48.07, but none of the providers can be installed
  - package nvidia-xconfig-3:515.48.07-1.el8.x86_64 requires nvidia-driver(x86-64) = 3:515.48.07, but none of the providers can be installed
  - package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - nothing provides dkms needed by kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64

The hint is that dkms is required.

nothing provides dkms needed by kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64

Enable EPEL Repository

# dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
 # dnf config-manager --enable epel

Install dkms

 # dnf install dkms*

Install the latest Nvidia Drivers (If possible).

# dnf module install nvidia-driver:latest

If the Error pop out like this

Last metadata expiration check: 0:01:01 ago on Mon 06 Jun 2022 08:47:40 PM EDT.
Error:
 Problem 1: package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
 Problem 2: package cuda-drivers-515.48.07-1.x86_64 requires nvidia-kmod >= 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
 Problem 3: package nvidia-driver-3:515.48.07-1.el8.x86_64 requires nvidia-kmod-common = 3:515.48.07, but none of the providers can be installed
  - package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
 Problem 4: package nvidia-driver-3:515.48.07-1.el8.x86_64 requires nvidia-kmod-common = 3:515.48.07, but none of the providers can be installed
  - package nvidia-modprobe-3:515.48.07-1.el8.x86_64 requires nvidia-driver(x86-64) = 3:515.48.07, but none of the providers can be installed
  - package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
 Problem 5: package nvidia-driver-3:515.48.07-1.el8.x86_64 requires nvidia-kmod-common = 3:515.48.07, but none of the providers can be installed
  - package nvidia-settings-3:515.48.07-1.el8.x86_64 requires nvidia-driver(x86-64) = 3:515.48.07, but none of the providers can be installed
  - package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
 Problem 6: package nvidia-driver-3:515.48.07-1.el8.x86_64 requires nvidia-kmod-common = 3:515.48.07, but none of the providers can be installed
  - package nvidia-xconfig-3:515.48.07-1.el8.x86_64 requires nvidia-driver(x86-64) = 3:515.48.07, but none of the providers can be installed
  - package nvidia-kmod-common-3:515.48.07-1.el8.noarch requires nvidia-kmod = 3:515.48.07, but none of the providers can be installed
  - cannot install the best candidate for the job
  - package kmod-nvidia-latest-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering
  - package kmod-nvidia-open-dkms-3:515.48.07-1.el8.x86_64 is filtered out by modular filtering

You will notice that the dkms issues has been resolved. Try not using the nvidia-driver:latest

# dnf module install nvidia-driver
===================================================================================================================================================
 Package                                Architecture        Version                                           Repository                      Size
===================================================================================================================================================
Upgrading:
 bcc                                    x86_64              0.19.0-5.el8                                      appstream                      674 k
 bcc-tools                              x86_64              0.19.0-5.el8                                      appstream                      447 k
 bpftrace                               x86_64              0.12.1-4.el8                                      appstream                      1.3 M
 clang-libs                             x86_64              13.0.1-1.module+el8.6.0+825+7e27476a              appstream                       23 M
 clang-resource-filesystem              x86_64              13.0.1-1.module+el8.6.0+825+7e27476a              appstream                       13 k
 compiler-rt                            x86_64              13.0.1-1.module+el8.6.0+825+7e27476a              appstream                      4.2 M
 libglvnd                               x86_64              1:1.3.4-1.el8                                     appstream                      126 k
 libglvnd-egl                           x86_64              1:1.3.4-1.el8                                     appstream                       48 k
 libglvnd-gles                          x86_64              1:1.3.4-1.el8                                     appstream                       39 k
 libglvnd-glx                           x86_64              1:1.3.4-1.el8                                     appstream                      136 k
 libomp-devel                           x86_64              13.0.1-1.module+el8.6.0+825+7e27476a              appstream                       28 k
 llvm-libs                              x86_64              13.0.1-1.module+el8.6.0+825+7e27476a              appstream                       24 M
 mesa-dri-drivers                       x86_64              21.3.4-1.el8                                      appstream                       11 M
 mesa-filesystem                        x86_64              21.3.4-1.el8                                      appstream                       33 k
 mesa-libxatracker                      x86_64              21.3.4-1.el8                                      appstream                      2.0 M
 python3-bcc                            x86_64              0.19.0-5.el8                                      appstream                       89 k
Installing group/module packages:
 cuda-drivers                           x86_64              515.48.07-1                                       cuda-rhel8-x86_64              8.1 k
 kmod-nvidia-latest-dkms                x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               30 M
 nvidia-driver                          x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               23 M
 nvidia-driver-NVML                     x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64              462 k
 nvidia-driver-NvFBCOpenGL              x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               54 k
 nvidia-driver-cuda                     x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64              455 k
 nvidia-driver-cuda-libs                x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               54 M
 nvidia-driver-devel                    x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               13 k
 nvidia-driver-libs                     x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64              177 M
 nvidia-kmod-common                     noarch              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               13 k
 nvidia-libXNVCtrl                      x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               26 k
 nvidia-libXNVCtrl-devel                x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               56 k
 nvidia-modprobe                        x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               37 k
 nvidia-persistenced                    x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64               43 k
 nvidia-settings                        x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64              835 k
 nvidia-xconfig                         x86_64              3:515.48.07-1.el8                                 cuda-rhel8-x86_64              106 k
Installing dependencies:
 dnf-plugin-nvidia                      noarch              2.0-1.el8                                         cuda-rhel8-x86_64               12 k
 egl-wayland                            x86_64              1.1.9-3.el8                                       appstream                       39 k
 libX11-devel                           x86_64              1.6.8-5.el8                                       appstream                      975 k
 libXau-devel                           x86_64              1.0.9-3.el8                                       appstream                       19 k
 libglvnd-opengl                        x86_64              1:1.3.4-1.el8                                     appstream                       46 k
 libvdpau                               x86_64              1.4-2.el8                                         appstream                       40 k
 libxcb-devel                           x86_64              1.13.1-1.el8                                      appstream                      1.1 M
 mesa-vulkan-drivers                    x86_64              21.3.4-1.el8                                      appstream                      6.7 M
 ocl-icd                                x86_64              2.2.12-1.el8                                      appstream                       50 k
 opencl-filesystem                      noarch              1.0-6.el8                                         appstream                      7.3 k
 vulkan-loader                          x86_64              1.3.204.0-2.el8                                   appstream                      133 k
 xorg-x11-proto-devel                   noarch              2020.1-3.el8                                      appstream                      279 k
Installing module profiles:
 nvidia-driver/default
Enabling module streams:
 nvidia-driver                                              latest-dkms

.....
.....

Finally do a

# nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.48.07    Driver Version: 515.48.07    CUDA Version: 11.7     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA A100-PCI...  Off  | 00000000:A3:00.0 Off |                    0 |
| N/A   49C    P0    46W / 250W |      0MiB / 40960MiB |      0%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA A100-PCI...  Off  | 00000000:C3:00.0 Off |                    0 |
| N/A   53C    P0    46W / 250W |      0MiB / 40960MiB |      0%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Failover feature “HFSS SBR+Solve” is not available. Request name hfssbr_solve does not exist in the licensing pool.

During usage of ANSYS EM, you may encounter issues like the one below.

Fail to enable feature using current license setting. Note that pro, premium, enterprise licenses are available on your server. To use these licenses check the corresponding UI option. For more information, search "PPE" in the help documentation. Failover feature "HFSS SBR+Solve" is not available. Request name hfssbr_solve does not exist in the licensing pool. No such feature exists. Feature: hfssbr_solveLicensepath: 1055@kangkong.hpc.ntu.edu.sg: FlexNet Licensing error:-5,147

The resolution is to activate the correct product licensing which are not activated by default. See the Pix on how to activate the licensingsee less.

Compiling Singularity-CE-3.10.0 on Rocky Linux 8

The Official Documentation can be found at https://sylabs.io/guides/3.0/user-guide/installation.html

Prerequisites 1 – Go

Go to the Download Page https://go.dev/dl/ to download the Linux Version.

Extract the archive you downloaded into /usr/local, creating a Go tree in /usr/local/go.

This step below will remove a previous installation at /usr/local/go, if any, prior to extracting. Please back up any data before proceeding.

% rm -rf /usr/local/go && tar -C /usr/local -xzf go1.18.3.linux-amd64.tar.gz

Add /usr/local/go/bin to the PATH environment variable. You can do this by adding the following line to your $HOME/.profile or /etc/profile (for a system-wide installation):

export PATH=$PATH:/usr/local/go/bin

Verify the Installation with the command

% go version

Compiling Singularity

To download Singularity, do visit the download site. Singularity uses a build system called makeit. mconfig is called to generate Makefile and them make is used to compile and install

% git clone https://github.com/sylabs/singularity.git --recurse-submodules
% cd singularity
% ./mconfig --prefix=/usr/local/singularity-ce-3.10.0
% cd builddir
% make
% make install
.....
.....
 checking: header linux/securebits.h... yes
 checking: header linux/capability.h... yes
 checking: libseccomp+headers... yes
 checking: conmon source... no

conmon source not found

Unless you are building --without-conmon you must 'git clone --recurse-submodules'
or 'git submodule update --init'.

You may want to install glib2-devel, delete the singularity directory and make the singularity again.

% dnf install glib2-devel

Remote the cloned singularity directory and git clone again

% rm -Rv --force singularity
% git clone https://github.com/sylabs/singularity.git --recurse-submodules

Recompile with mconfig again. If successful, it should be something like

=> generating fragments ...
=> building Makefile ...
=> generating singularity-ce.spec ...
=> project singularity-ce setup with :
    - host arch: x86_64
    - host wordsize: 64-bit
    - host C compiler: cc
    - host Go compiler: /usr/local/go-1.18.3/bin/go
    - host system: unix
      ---
    - target arch: x86_64
    - target wordsize: 64-bit
    - target C compiler: cc
      ---
    - config profile: release
      ---
    - SUID install: yes
    - Network plugins: yes
    - seccomp support: yes
    - Build conmon: yes
      ---
    - verbose: no
      ---
    - cryptsetup: /usr/sbin/cryptsetup
      ---
    - version: 3.10.0+21-g1b1a05ff8
% cd builddir
% make
% make install

Testing

As long as you see a cow your installation is working properly…….

% singularity run library://godlovedc/funny/lolcow
< Exercise caution in your daily affairs. >
 -----------------------------------------
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||

References:

  1. https://sylabs.io/guides/3.0/user-guide/installation.html
  2. https://github.com/NIH-HPC/Singularity-Tutorial
  3. Compiling Singularity-CE-3.9.2 on CentOS-7

Error while loading shared libraries: libnsl.so.1: cannot open shared object file: No such file or directory on Rocky-Linux 8.5

If you encounter an error similar to this

% /usr/local/ansys_inc/v221/fluent/fluent22.1.0/launcher/bin/../lnamd64/launcher1: error while loading shared libraries: libnsl.so.1: cannot open shared object file: No such file or director

You have to install the libnsl library as libnsl.so.1 is not installed in Red Hat Linux release 8 be default.

% dnf install libnsl

oneAPI DevSummit at ISC 2022

The Event Website can be found here. OneAPI DevSummit ISC 2022

Join us for this year’s all-remote technical conference to see the growing momentum of oneAPI and learn about how the community is using oneAPI on various platforms such as ARM, NVIDIA, Intel and more for HPC and AI workloads.This year offers a full day of hands-on tutorials, tech talks, and workshops spanning all things high-performance computing and AI: hardware, oneAPI software tools, best-practice techniques, and more to advance and deploy next-generation innovations that scale across platforms.

What you’ll get:

  • Fresh new content from industry-leading experts—SiPearl, Argonne, Pázmány Péter Catholic University, Durham University, and more.
  • Topics covering cross-architecture computing, SYCL programming challenges and opportunities, AI analytics, and Exascale.
  • Advance insight about the latest advancements shaping the future of high-performance computing.
  • A deep dive into cross-architecture software development—tech talks, how-to’s, and hands-on training sessions

Date: 27th May 2022

Time: 9am to 6:30pm CET

Register

Compiling GCC 12.1.0 on Rocky Linux 8.5

Option 1: The longer and customised method

Step 1: Download the following prerequisites applications libraries from https://gcc.gnu.org/pub/gcc/infrastructure/

  1. gmp-6.2.1
  2. mpfr-4.1.0
  3. mpc-1.2.1

Step 1. Install gmp-6.2.1

% bunzip2 gmp-6.2.1.tar.bz2
% tar -xvf gmp-6.2.1.tar
% cd gmp-6.2.1
% ./configure --prefix=/usr/local/gmp-6.2.1
% make 
% make install

Step 2: Install mpfr-4.1.0 (requires gmp-6.2.1 as prerequisites)

% bunzip2 mpfr-4.1.0.tar.bz
% tar -xvf mpfr-4.1.0.tar
% cd mpfr-4.1.0/
% ./configure --prefix=/usr/local/mpfr-4.1.0 --with-gmp=/usr/local/gmp-6.2.1/
% make
% make install

Step 3: Install mpc-1.2.1 (requires gmp-6.2.1 and mpfr-4.1.0)

% tar -zxvf mpc-1.2.1.tar.gz
% cd mpc-1.2.1/
% ./configure --prefix=/usr/local/mpc-1.2.1 -with-gmp=/usr/local/gmp-6.2.1 --with-mpfr=/usr/local/mpfr-4.1.0
% make
% make install

Step 4: Install isl-0.24 (requires gmp-6.2.1 as prerequisites)

% bunzip2 isl-0.24.tar.bz2
% tar -xvf isl-0.24.tar
% cd isl-0.24
% ./configure --prefix=/usr/local/isl-0.24 --with-gmp-prefix=/usr/local/gmp-6.2.1/
% make
% make install

Configure and Build GCC

% git clone git://gcc.gnu.org/git/gcc.git
% cd gcc
% mkdir build-gcc
% cd build-gcc
% ../configure --prefix=/usr/local/gcc-12.1 --enable-bootstrap --enable-languages=c,c++,fortran,lto --enable-shared --enable-threads=posix --enable-checking=release --enable-multilib --with-system-zlib --enable-__cxa_atexit --disable-libunwind-exceptions --enable-gnu-unique-object --enable-linker-build-id --with-gcc-major-version-only --with-linker-hash-style=gnu --enable-plugin --enable-initfini-array --disable-libmpx --enable-offload-targets=nvptx-none --without-cuda-driver --enable-gnu-indirect-function --enable-cet --with-tune=generic --with-arch_32=x86-64 --build=x86_64-redhat-linux --with-static-standard-libraries --with-gmp=/usr/local/gmp-6.2.1 --with-mpc=/usr/local/mpc-1.2.1 --with-mpfr=/usr/local/mpfr-4.1.0 --with-isl=/usr/local/isl-0.24 --with-isl-lib=/usr/local/isl-0.24/lib --with-isl-include=/usr/local/isl-0.24/include

You may encounter issues like

/usr/local/software/gcc/build-gcc/./gcc/cc1: error while loading shared libraries: libisl.so.23: cannot open shared object file: No such file or directory

An alternative way is to let GCC do the download for you….. Retracing the steps

% git clone git://gcc.gnu.org/git/gcc.git
% cd gcc
% contrib/download_prerequisites
% mkdir build-gcc
% cd build-gcc
% ../configure --prefix=/usr/local/gcc-12.1 --enable-bootstrap --enable-languages=c,c++,fortran,lto --enable-shared --enable-threads=posix --enable-checking=release --enable-multilib --with-system-zlib --enable-__cxa_atexit --disable-libunwind-exceptions --enable-gnu-unique-object --enable-linker-build-id --with-gcc-major-version-only --with-linker-hash-style=gnu --enable-plugin --enable-initfini-array --disable-libmpx --enable-offload-targets=nvptx-none --without-cuda-driver --enable-gnu-indirect-function --enable-cet --with-tune=generic --with-arch_32=x86-64 --build=x86_64-redhat-linux --with-static-standard-libraries

If you encounter any errors during make such as

/usr/include/gnu/stubs.h:7:11: fatal error: gnu/stubs-32.h: No such file or directory

It is due to missing glibc-devel and glibc-devel.i686. You have to do a dnf install glibc-devel and glibc-devel.i686

% dnf install glibc-devel glibc-devel.i686

Option 2: The Faster Method

You can take a look at Compiling GCC-10.4.0 on CentOS-7 and tune to GCC-12.1.0

References:

References:

https://gcc.gnu.org/wiki/InstallingGCC

How Synthetic Data Supercharges Vision AI Development NVIDIA Webinar

In this meetup you’ll learn how synthetic data is transforming AI development efforts:

  • Learn how to use NVIDIA’s Omniverse Replicator to quickly create synthetic data and how it can integrate with NVIDIA TAO training tools.
  • Hear from Sky Engine AI, an NVIDIA synthetic data partner, sharing how you can leverage 3rd party synthetic data services.
  • Get your questions answered in a live Q&A session with our team of experts.

Register here and select one of the following sessions:

  • Americas, Europe, Middle East: Wednesday May 18 – 8am PT | 4PM CET 
  • Asia-Pacific: Thursday May 19 – 11am SST | 12pm JST/KST | ?8:30am IST