Compiling VASP-5.4.4 with Intel MPI-5.0.3

Details Information can be taken from Installing VASP from VASPwiki. This for CPU Compilation

Activate the Intel Compilers/ Intel MPI Environment. In your .bashrc

source /usr/local/intel_2015/parallel_studio_xe_2015/bin/psxevars.sh intel64
source /usr/local/intel_2015/impi/5.0.3.049/bin64/mpivars.sh intel64
source /usr/local/intel_2015/composerxe/bin/compilervars.sh intel64
source /usr/local/intel_2015/mkl/bin/mklvars.sh intel64
MKLROOT=/usr/local/intel_2015/mkl

At the installation base of vasp.5.4.4 base

# cp arch/makefile.include.linux_intel ./makefile.include

For Linking against Intel-MPI Libraries. Edit makefile.include.linux_intel

# vim makefile.include.linux_intel
MKL_PATH = $(MKLROOT)/lib/intel64
BLACS = -lmkl_blacs_intelmpi_lp64
SCALAPACK = $(MKL_PATH)/libmkl_scalapack_lp64.a $(BLACS)
LLIBS = $(SCALAPACK) $(LAPACK) $(BLAS)

For Linking Intel MKL Wrapper of fftw at makefile.include.linux_intel

OBJECTS= fftmpiw.o fftmpi_map.o fftw3d.o fft3dlib.o \
         $(MKLROOT)/interfaces/fftw3xf/libfftw3xf_intel.a
INCS=-I$(MKLROOT)/include/fftw

Make the files

# make all

If you wish to build the standard, gamma, non-collinear individually, you should make as below

# make std
# make gam
# make ncl

The vasp binary of standard, gamma-only, and non-collinear version of VASP can be found in the bin folder of vasp

vasp_gam vasp_ncl vasp_std

Compiling VTST Tools with VASP-5.3.5

Taken from VTST.Tools Installation Guide

The VTST•Tools has a fortran component which can be linked into the VASP code as well as a collection of scripts. Its CINEB has some improvement compared to the NEB method

Step 1: Download the VTST Code

Download the VTST Code (vtstcode.tgz) at http://theory.cm.utexas.edu/vtsttools/download.html 

Step 2: Download the files in vtsttools/source into your vasp source directory.

In my situation, I put it in /home/user1/vasp.5.3.5_impi_neb/vasp.5.3/

$ tar -zxvf vtstcode.gz
$ cd vtstcode-173
$ cp *.* ..

(Replace the chain.F with the new one)

Step 3: Edit main.F in the source file

Find and Replace

CALL CHAIN_FORCE(T_INFO%NIONS,DYN%POSION,TOTEN,TIFOR, &
LATT_CUR%A,LATT_CUR%B,IO%IU6)

with

CALL CHAIN_FORCE(T_INFO%NIONS,DYN%POSION,TOTEN,TIFOR, &
TSIF,LATT_CUR%A,LATT_CUR%B,IO%IU6)

Step 4: Edit the Makefile

To build the code, the VASP makefile needs to be changed. Find the variable SOURCE, which defines which objects will be built, and add the following objects before chain.o

bfgs.o dynmat.o instanton.o lbfgs.o sd.o cg.o dimer.o bbm.o fire.o lanczos.o neb.o qm.o opt.o \

Step 5: Change and compile the Makefile

Please follow Compiling VASP-5.2.12 with Intel MPI-5.0.3

References:

  1. VTST.Tools Installation Guide
  2. Compiling VASP-5.2.12 with Intel MPI-5.0.3

Compiling VASP-5.2.12 with Intel MPI-5.0.3

Vienna Ab initio Simulation Package (VASP) is a computer program for atomic scale materials modelling, e.g. electronic structure calculations and quantum-mechanical molecular dynamics, from first principles.

A. Prerequisites

To Compile VASP-5.2.12, I used

  1. Intel Compiler 15.0.6
  2. Intel MPI 5.0.3
  3. Maths Kernel Library 11.2.4

B. Compiling VASP Libraries

Assuming you have unpacked the VASP files. Here is may make file

.SUFFIXES: .inc .f .F
#-----------------------------------------------------------------------
# Makefile for LINUX NAG f90
#-----------------------------------------------------------------------
# fortran compiler
FC=ifort

# C-preprocessor
#CPP     = /usr/lib/gcc-lib/i486-linux/2.7.2/cpp -P -C $*.F >$*.f
CPP      = gcc -E -P -C -DLONGCHAR $*.F >$*.f

CFLAGS = -O
FFLAGS = -Os -FI
FREE   = -FR

DOBJ =  preclib.o timing_.o derrf_.o dclock_.o  diolib.o dlexlib.o drdatab.o

#-----------------------------------------------------------------------
# general rules
#-----------------------------------------------------------------------

libdmy.a: $(DOBJ) linpack_double.o
-rm libdmy.a
ar vq libdmy.a $(DOBJ)

linpack_double.o: linpack_double.f
$(FC) $(FFLAGS) $(NOFREE) -c linpack_double.f

# files which do not require autodouble
lapack_double.o: lapack_double.f
$(FC) $(FFLAGS) $(NOFREE) -c lapack_double.f
lapack_single.o: lapack_single.f
$(FC) $(FFLAGS) $(NOFREE) -c lapack_single.f
#lapack_cray.o: lapack_cray.f
#       $(FC) $(FFLAGS) $(NOFREE) -c lapack_cray.f

.c.o:
$(CC) $(CFLAGS) -c $*.c
.F.o:
$(CPP)
$(FC) $(FFLAGS) $(FREE) $(INCS) -c $*.f
.F.f:
$(CPP)
.f.o:
$(FC) $(FFLAGS) $(FREE) $(INCS) -c $*.f

C. Compiling VASP

1. Copy the Makefile from makefile.linux_ifc_P4 in the vasp software.

# cp makefile.linux_ifc_P4 Makefile

2. Edit the Makefile
FC

#-----------------------------------------------------------------------
# fortran compiler and linker
#-----------------------------------------------------------------------
FC=mpiifort
# fortran linker
FCL=$(FC)

CPP

CPP    = $(CPP_) -DMPI  -DHOST=\"LinuxIFC\" -DIFC \
        -DCACHE_SIZE=32000 -DPGF90 -Davoidalloc -DNGZhalf \
        -DMPI_BLOCK=64000 -Duse_collective -DscaLAPACK

FFLAGS

MKLROOT=/usr/local/RH6_apps/intel_2015/mkl
MKL_PATH=$(MKLROOT)/lib/intel64
FFLAGS = -FR -names lowercase -assume byterecl -I$(MKLROOT)/include/fftw

OFLAG

#Haswell Architecture
OFLAG=-O3 -xCORE-AVX2

#Sandy-Bridge Architecture
OFLAG=-O3

The -xCORE-AVX2 is for Haswell Architecture

BLAS

BLAS= -mkl=cluster

-mkl=cluster is an Intel compiler flag that to include Intel MKL libraries, that will link with Intel MKL BLAS, LAPACK, FFT, ScaLAPACK functions that are used in VASP.

FFT3D

fftmpiw.o fftmpi_map.o fftw3d.o fft3dlib.o
INCS = -I$(MKLROOT)/include/fftw

LAPACK and SCALAPACK

LAPACK=
SCA=

Since the -mkl=cluster, includes MKL ScaLAPACK libraries also, it is not required to mentioned the ScaLAPACK libs. That include LAPACK

References:

  1. Building VASP* with Intel® MKL and Intel® Compilers
  2. (Intel Developer Zone)

Compiling VASP 5.3.5 with OpenMPI 1.6.5 and Intel 12.1.5

Do take a look Compiling VASP 5.3.3 with OpenMPI 1.6.5 and Intel 12.1.5 for the step by step approach to compiling. Instead I will put up my make file here for your evaluation

 

Step 1: Makefile for vasp.5.lib

.SUFFIXES: .inc .f .F
#-----------------------------------------------------------------------
# Makefile for LINUX NAG f90
#-----------------------------------------------------------------------
# fortran compiler
FC=ifort

# C-preprocessor
#CPP = /usr/lib/gcc-lib/i486-linux/2.7.2/cpp -P -C $*.F >$*.f
CPP = gcc -E -P -C -DLONGCHAR $*.F >$*.f

CFLAGS = -O
FFLAGS = -Os -FI
FREE = -FR

DOBJ = preclib.o timing_.o derrf_.o dclock_.o diolib.o dlexlib.o drdatab.o

#-----------------------------------------------------------------------
# general rules
#-----------------------------------------------------------------------

libdmy.a: $(DOBJ) linpack_double.o
-rm libdmy.a
ar vq libdmy.a $(DOBJ)

linpack_double.o: linpack_double.f
$(FC) $(FFLAGS) $(NOFREE) -c linpack_double.f

# files which do not require autodouble
lapack_double.o: lapack_double.f
$(FC) $(FFLAGS) $(NOFREE) -c lapack_double.f
lapack_single.o: lapack_single.f
$(FC) $(FFLAGS) $(NOFREE) -c lapack_single.f
#lapack_cray.o: lapack_cray.f
# $(FC) $(FFLAGS) $(NOFREE) -c lapack_cray.f

.c.o:
$(CC) $(CFLAGS) -c $*.c
.F.o:
$(CPP)
$(FC) $(FFLAGS) $(FREE) $(INCS) -c $*.f
.F.f:
$(CPP)
.f.o:
$(FC) $(FFLAGS) $(FREE) $(INCS) -c $*.f

 

Step 2. Makefile for vasp.5.3.5

.SUFFIXES: .inc .f .f90 .F
#-----------------------------------------------------------------------
# Makefile for Intel Fortran compiler for Pentium/Athlon/Opteron
# based systems
# we recommend this makefile for both Intel as well as AMD systems
# for AMD based systems appropriate BLAS (libgoto) and fftw libraries are
# however mandatory (whereas they are optional for Intel platforms)
# For Athlon we recommend
#  ) to link against libgoto (and mkl as a backup for missing routines)
#  ) odd enough link in libfftw3xf_intel.a (fftw interface for mkl)
# feedback is greatly appreciated
#
# The makefile was tested only under Linux on Intel and AMD platforms
# the following compiler versions have been tested:
#  - ifc.7.1  works stable somewhat slow but reliably
#  - ifc.8.1  fails to compile the code properly
#  - ifc.9.1  recommended (both for 32 and 64 bit)
#  - ifc.10.1 partially recommended (both for 32 and 64 bit)
#             tested build 20080312 Package ID: l_fc_p_10.1.015
#             the gamma only mpi version can not be compiles
#             using ifc.10.1
#  - ifc.11.1 partially recommended (some problems with Gamma only and intel fftw)
#             Build 20090630 Package ID: l_cprof_p_11.1.046
#  - ifort.12.1 strongly recommended (we use this to compile vasp)
#             Version 12.1.5.339 Build 20120612
#
# it might be required to change some of library path ways, since
# LINUX installations vary a lot
#
# Hence check ***ALL*** options in this makefile very carefully
#-----------------------------------------------------------------------
#
# BLAS must be installed on the machine
# there are several options:
# 1) very slow but works:
#   retrieve the lapackage from ftp.netlib.org
#   and compile the blas routines (BLAS/SRC directory)
#   please use g77 or f77 for the compilation. When I tried to
#   use pgf77 or pgf90 for BLAS, VASP hang up when calling
#   ZHEEV  (however this was with lapack 1.1 now I use lapack 2.0)
# 2) more desirable: get an optimized BLAS
#
# the two most reliable packages around are presently:
# 2a) Intels own optimised BLAS (PIII, P4, PD, PC2, Itanium)
#     http://developer.intel.com/software/products/mkl/
#   this is really excellent, if you use Intel CPU's
#
# 2b) probably fastest SSE2 (4 GFlops on P4, 2.53 GHz, 16 GFlops PD,
#     around 30 GFlops on Quad core)
#   Kazushige Goto's BLAS
#   http://www.cs.utexas.edu/users/kgoto/signup_first.html
#   http://www.tacc.utexas.edu/resources/software/
#
#-----------------------------------------------------------------------

# all CPP processed fortran files have the extension .f90
SUFFIX=.f90

#-----------------------------------------------------------------------
# fortran compiler and linker
#-----------------------------------------------------------------------
FC=mpif90
# fortran linker
FCL=$(FC) -mkl


#-----------------------------------------------------------------------
# whereis CPP ?? (I need CPP, can't use gcc with proper options)
# that's the location of gcc for SUSE 5.3
#
#  CPP_   =  /usr/lib/gcc-lib/i486-linux/2.7.2/cpp -P -C
#
# that's probably the right line for some Red Hat distribution:
#
#  CPP_   =  /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/cpp -P -C
#
#  SUSE X.X, maybe some Red Hat distributions:

CPP_ =  ./preprocess <$*.F | /usr/bin/cpp -P -C -traditional >$*$(SUFFIX)

# this release should be fpp clean
# we now recommend fpp as preprocessor
# if this fails go back to cpp
CPP_=fpp -f_com=no -free -w0 $*.F $*$(SUFFIX)

#-----------------------------------------------------------------------
# possible options for CPP:
# NGXhalf             charge density   reduced in X direction
# wNGXhalf            gamma point only reduced in X direction
# avoidalloc          avoid ALLOCATE if possible
# PGF90               work around some for some PGF90 / IFC bugs
# CACHE_SIZE          1000 for PII,PIII, 5000 for Athlon, 8000-12000 P4, PD
# RPROMU_DGEMV        use DGEMV instead of DGEMM in RPRO (depends on used BLAS)
# RACCMU_DGEMV        use DGEMV instead of DGEMM in RACC (depends on used BLAS)
# tbdyn                 MD package of Tomas  Bucko
#-----------------------------------------------------------------------

CPP     = $(CPP_)  -DHOST=\"LinuxIFC\" \
-DCACHE_SIZE=12000 -DPGF90 -Davoidalloc -DNGXhalf \
#          -DRPROMU_DGEMV  -DRACCMU_DGEMV

#-----------------------------------------------------------------------
# general fortran flags  (there must a trailing blank on this line)
# byterecl is strictly required for ifc, since otherwise
# the WAVECAR file becomes huge
#-----------------------------------------------------------------------

#FFLAGS =  -FR -names lowercase -assume byterecl -I$(MKLROOT)/include/fftw -xAVX
FFLAGS =  -free -names lowercase -assume byterecl
#-----------------------------------------------------------------------
# optimization
# we have tested whether higher optimisation improves performance
# -axK  SSE1 optimization,  but also generate code executable on all mach.
#       xK improves performance somewhat on XP, and a is required in order
#       to run the code on older Athlons as well
# -xW   SSE2 optimization
# -axW  SSE2 optimization,  but also generate code executable on all mach.
# -tpp6 P3 optimization
# -tpp7 P4 optimization
#-----------------------------------------------------------------------

# ifc.9.1, ifc.10.1 recommended
OFLAG=-O2 -ip
#OFLAG=-O2 -ip

OFLAG_HIGH = $(OFLAG)
OBJ_HIGH =
OBJ_NOOPT =
DEBUG  = -FR -O0
INLINE = $(OFLAG)

#-----------------------------------------------------------------------
# the following lines specify the position of BLAS  and LAPACK
# we recommend to use mkl, that is simple and most likely
# fastest in Intel based machines
#-----------------------------------------------------------------------

# mkl path for ifc 11 compiler
#MKL_PATH=$(MKLROOT)/lib/e

# mkl path for ifc 12 compiler
MKL_PATH=$(MKLROOT)/lib/intel64

MKL_FFTW_PATH=$(MKLROOT)/interfaces/fftw3xf/

# BLAS
# setting -DRPROMU_DGEMV  -DRACCMU_DGEMV in the CPP lines usually speeds up program execution
# BLAS= -Wl,--start-group $(MKL_PATH)/libmkl_intel_lp64.a $(MKL_PATH)/libmkl_intel_thread.a $(MKL_PATH)/libmkl_core.a -Wl,--end-group -lguide
# faster linking and available from at least version 11
#BLAS= -lguide  -mkl
BLAS= -mkl=sequential


# LAPACK, use vasp.5.lib/lapack_double

#LAPACK= ../vasp.5.lib/lapack_double.o

# LAPACK from mkl, usually faster and contains scaLAPACK as well
LAPACK =
#LAPACK= $(MKL_PATH)/libmkl_intel_lp64.a

# here a tricky version, link in libgoto and use mkl as a backup
# also needs a special line for LAPACK
# this is the best thing you can do on AMD based systems !!!!!!

#BLAS =  -Wl,--start-group /opt/libs/libgoto/libgoto.so $(MKL_PATH)/libmkl_intel_thread.a $(MKL_PATH)/libmkl_core.a -Wl,--end-group  -liomp5
#LAPACK= /opt/libs/libgoto/libgoto.so $(MKL_PATH)/libmkl_intel_lp64.a

#-----------------------------------------------------------------------

LIB  = -L../vasp.5.lib -ldmy \
../vasp.5.lib/linpack_double.o $(LAPACK) \
$(BLAS)

# options for linking, nothing is required (usually)
LINK =

#-----------------------------------------------------------------------
# fft libraries:
# VASP.5.2 can use fftw.3.1.X (http://www.fftw.org)
# since this version is faster on P4 machines, we recommend to use it
#-----------------------------------------------------------------------

FFT3D   = fft3dfurth.o fft3dlib.o

# alternatively: fftw.3.1.X is slighly faster and should be used if available
#FFT3D   = fftw3d.o fft3dlib.o   /opt/libs/fftw-3.1.2/lib/libfftw3.a

# you may also try to use the fftw wrapper to mkl (but the path might vary a lot)
# it seems this is best for AMD based systems
#FFT3D   = fftw3d.o fft3dlib.o $(MKL_FFTW_PATH)/libfftw3xf_intel.a
#INCS = -I$(MKLROOT)/include/fftw

#=======================================================================
# MPI section, uncomment the following lines until
#    general  rules and compile lines
# presently we recommend OPENMPI, since it seems to offer better
# performance than lam or mpich
#
# !!! Please do not send me any queries on how to install MPI, I will
# certainly not answer them !!!!
#=======================================================================
#-----------------------------------------------------------------------
# fortran linker for mpi
#-----------------------------------------------------------------------

#FC=mpif90
#FCL=$(FC)

#-----------------------------------------------------------------------
# additional options for CPP in parallel version (see also above):
# NGZhalf             charge density   reduced in Z direction
# wNGZhalf            gamma point only reduced in Z direction
# scaLAPACK           use scaLAPACK (recommended if mkl is available)
# avoidalloc          avoid ALLOCATE if possible
# PGF90               work around some for some PGF90 / IFC bugs
# CACHE_SIZE          1000 for PII,PIII, 5000 for Athlon, 8000-12000 P4, PD
# RPROMU_DGEMV        use DGEMV instead of DGEMM in RPRO (depends on used BLAS)
# RACCMU_DGEMV        use DGEMV instead of DGEMM in RACC (depends on used BLAS)
# tbdyn                 MD package of Tomas  Bucko
#-----------------------------------------------------------------------

#-----------------------------------------------------------------------

CPP    = $(CPP_) -DMPI  -DHOST=\"LinuxIFC\" -DIFC \
-DCACHE_SIZE=4000 -DPGF90 -Davoidalloc -DNGZhalf \
-DMPI_BLOCK=8000 -Duse_collective -DscaLAPACK    \
-DRPROMU_DGEMV  -DRACCMU_DGEMV

#-----------------------------------------------------------------------
# location of SCALAPACK
# if you do not use SCALAPACK simply leave this section commented out
#-----------------------------------------------------------------------

# usually simplest link in mkl scaLAPACK
BLACS= -lmkl_blacs_openmpi_lp64
SCA= $(MKL_PATH)/libmkl_scalapack_lp64.a $(BLACS)
#SCA= -lmkl_scalapack_lp64.a -lmkl_blacs_openmpi_lp64

#-----------------------------------------------------------------------
# libraries
#-----------------------------------------------------------------------

LIB     = -L../vasp.5.lib -ldmy  \
../vasp.5.lib/linpack_double.o \
$(SCA) $(LAPACK) $(BLAS)

#-----------------------------------------------------------------------
# parallel FFT
#-----------------------------------------------------------------------

# FFT: fftmpi.o with fft3dlib of Juergen Furthmueller
FFT3D   = fftmpi.o fftmpi_map.o fft3dfurth.o fft3dlib.o $(MKL_FFTW_PATH)/libfftw3xf_intel.a

# alternatively: fftw.3.1.X is slighly faster and should be used if available
#FFT3D   = fftmpiw.o fftmpi_map.o fftw3d.o fft3dlib.o  /opt/libs/fftw-3.1.2/lib/libfftw3.a

# you may also try to use the fftw wrapper to mkl (but the path might vary a lot)
# it seems this is best for AMD based systems
#FFT3D   = fftmpiw.o fftmpi_map.o  fftw3d.o  fft3dlib.o   $(MKL_FFTW_PATH)/libfftw3xf_intel.a
#INCS = -I$(MKLROOT)/include/fftw

#-----------------------------------------------------------------------
# general rules and compile lines
#-----------------------------------------------------------------------
BASIC=   symmetry.o symlib.o   lattlib.o  random.o


SOURCE=  base.o     mpi.o      smart_allocate.o      xml.o  \
constant.o jacobi.o   main_mpi.o  scala.o   \
asa.o      lattice.o  poscar.o   ini.o  mgrid.o  xclib.o  vdw_nl.o  xclib_grad.o \
radial.o   pseudo.o   gridq.o     ebs.o  \
mkpoints.o wave.o     wave_mpi.o  wave_high.o  spinsym.o \
$(BASIC)   nonl.o     nonlr.o    nonl_high.o dfast.o    choleski2.o \
mix.o      hamil.o    xcgrad.o   xcspin.o    potex1.o   potex2.o  \
constrmag.o cl_shift.o relativistic.o LDApU.o \
paw_base.o metagga.o  egrad.o    pawsym.o   pawfock.o  pawlhf.o   rhfatm.o  hyperfine.o paw.o   \
mkpoints_full.o       charge.o   Lebedev-Laikov.o  stockholder.o dipol.o    pot.o \
dos.o      elf.o      tet.o      tetweight.o hamil_rot.o \
chain.o    dyna.o     k-proj.o    sphpro.o    us.o  core_rel.o \
aedens.o   wavpre.o   wavpre_noio.o broyden.o \
dynbr.o    hamil_high.o  rmm-diis.o reader.o   writer.o   tutor.o xml_writer.o \
brent.o    stufak.o   fileio.o   opergrid.o stepver.o  \
chgloc.o   fast_aug.o fock_multipole.o  fock.o  mkpoints_change.o sym_grad.o \
mymath.o   internals.o npt_dynamics.o   dynconstr.o dimer_heyden.o dvvtrajectory.o vdwforcefield.o \
nmr.o      pead.o     subrot.o   subrot_scf.o \
force.o    pwlhf.o    gw_model.o optreal.o  steep.o    davidson.o  david_inner.o \
electron.o rot.o  electron_all.o shm.o    pardens.o  paircorrection.o \
optics.o   constr_cell_relax.o   stm.o    finite_diff.o elpol.o    \
hamil_lr.o rmm-diis_lr.o  subrot_cluster.o subrot_lr.o \
lr_helper.o hamil_lrf.o   elinear_response.o ilinear_response.o \
linear_optics.o \
setlocalpp.o  wannier.o electron_OEP.o electron_lhf.o twoelectron4o.o \
mlwf.o     ratpol.o screened_2e.o wave_cacher.o chi_base.o wpot.o \
local_field.o ump2.o ump2kpar.o fcidump.o ump2no.o \
bse_te.o bse.o acfdt.o chi.o sydmat.o dmft.o \
rmm-diis_mlr.o  linear_response_NMR.o wannier_interpol.o linear_response.o

vasp: $(SOURCE) $(FFT3D) $(INC) main.o
rm -f vasp
$(FCL) -o vasp main.o  $(SOURCE)   $(FFT3D) $(LIB) $(LINK)
makeparam: $(SOURCE) $(FFT3D) makeparam.o main.F $(INC)
$(FCL) -o makeparam  $(LINK) makeparam.o $(SOURCE) $(FFT3D) $(LIB)
zgemmtest: zgemmtest.o base.o random.o $(INC)
$(FCL) -o zgemmtest $(LINK) zgemmtest.o random.o base.o $(LIB)
dgemmtest: dgemmtest.o base.o random.o $(INC)
$(FCL) -o dgemmtest $(LINK) dgemmtest.o random.o base.o $(LIB)
ffttest: base.o smart_allocate.o mpi.o mgrid.o random.o ffttest.o $(FFT3D) $(INC)
$(FCL) -o ffttest $(LINK) ffttest.o mpi.o mgrid.o random.o smart_allocate.o base.o $(FFT3D) $(LIB)
kpoints: $(SOURCE) $(FFT3D) makekpoints.o main.F $(INC)
$(FCL) -o kpoints $(LINK) makekpoints.o $(SOURCE) $(FFT3D) $(LIB)

clean:
-rm -f *.g *.f *.o *.L *.mod ; touch *.F

main.o: main$(SUFFIX)
$(FC) $(FFLAGS)$(DEBUG)  $(INCS) -c main$(SUFFIX)
xcgrad.o: xcgrad$(SUFFIX)
$(FC) $(FFLAGS) $(INLINE)  $(INCS) -c xcgrad$(SUFFIX)
xcspin.o: xcspin$(SUFFIX)
$(FC) $(FFLAGS) $(INLINE)  $(INCS) -c xcspin$(SUFFIX)

makeparam.o: makeparam$(SUFFIX)
$(FC) $(FFLAGS)$(DEBUG)  $(INCS) -c makeparam$(SUFFIX)

makeparam$(SUFFIX): makeparam.F main.F
#
# MIND: I do not have a full dependency list for the include
# and MODULES: here are only the minimal basic dependencies
# if one strucuture is changed then touch_dep must be called
# with the corresponding name of the structure
#
base.o: base.inc base.F
mgrid.o: mgrid.inc mgrid.F
constant.o: constant.inc constant.F
lattice.o: lattice.inc lattice.F
setex.o: setexm.inc setex.F
pseudo.o: pseudo.inc pseudo.F
mkpoints.o: mkpoints.inc mkpoints.F
wave.o: wave.F
nonl.o: nonl.inc nonl.F
nonlr.o: nonlr.inc nonlr.F

$(OBJ_HIGH):
$(CPP)
$(FC) $(FFLAGS) $(OFLAG_HIGH) $(INCS) -c $*$(SUFFIX)
$(OBJ_NOOPT):
$(CPP)
$(FC) $(FFLAGS) $(INCS) -c $*$(SUFFIX)

fft3dlib_f77.o: fft3dlib_f77.F
$(CPP)
$(F77) $(FFLAGS_F77) -c $*$(SUFFIX)

.F.o:
$(CPP)
$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)
.F$(SUFFIX):
$(CPP)
$(SUFFIX).o:
$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)

# special rules
#-----------------------------------------------------------------------
# these special rules have been tested for ifc.11 and ifc.12 only

fft3dlib.o : fft3dlib.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
fft3dfurth.o : fft3dfurth.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
fftw3d.o : fftw3d.F
$(CPP)
$(FC) -FR -lowercase -O1 $(INCS) -c $*$(SUFFIX)
fftmpi.o : fftmpi.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
fftmpiw.o : fftmpiw.F
$(CPP)
$(FC) -FR -lowercase -O1 $(INCS) -c $*$(SUFFIX)
wave_high.o : wave_high.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
# the following rules are probably no longer required (-O3 seems to work)
wave.o : wave.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
paw.o : paw.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
cl_shift.o : cl_shift.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
us.o : us.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
LDApU.o : LDApU.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)

Compiling VASP 5.3.3 with OpenMPI 1.6.5 and Intel 12.1.5

Vienna Ab initio Simulation Package (VASP) is a computer program for atomic scale materials modelling, e.g. electronic structure calculations and quantum-mechanical molecular dynamics, from first principles.

To compile VASP, I will be using the following

  1. Intel Compiler XE 12.1.5
  2. OpenMPI 1.6.5
  3. Maths Kernel Library (MKL)
  4. CentOS 6.3 / RH 6.3

A. Prerequisites

Step 1: Install and Compile Intel XE Compilers 12.1.5 and OpenMPI 1.6.5

  1. Compiling OpenMPI 1.6.5 with Intel 12.1.5 on CentO 6

Step 2: Intel MKL FFTW wrappers

  1. Compile and Build FFTW3 wrapper routines on MKL implementation of FFT

B. Compiling VASP Libraries

Assuming you have unpacked the VASP files. Here is may make file

.SUFFIXES: .inc .f .F
#-----------------------------------------------------------------------
# Makefile for LINUX NAG f90
#-----------------------------------------------------------------------
# fortran compiler
FC=ifort

# C-preprocessor
#CPP     = /usr/lib/gcc-lib/i486-linux/2.7.2/cpp -P -C $*.F >$*.f
CPP      = gcc -E -P -C -DLONGCHAR $*.F >$*.f

CFLAGS = -O
FFLAGS = -Os -FI
FREE   = -FR

DOBJ =  preclib.o timing_.o derrf_.o dclock_.o  diolib.o dlexlib.o drdatab.o

#-----------------------------------------------------------------------
# general rules
#-----------------------------------------------------------------------

libdmy.a: $(DOBJ) linpack_double.o
-rm libdmy.a
ar vq libdmy.a $(DOBJ)

linpack_double.o: linpack_double.f
$(FC) $(FFLAGS) $(NOFREE) -c linpack_double.f

# files which do not require autodouble
lapack_double.o: lapack_double.f
$(FC) $(FFLAGS) $(NOFREE) -c lapack_double.f
lapack_single.o: lapack_single.f
$(FC) $(FFLAGS) $(NOFREE) -c lapack_single.f
#lapack_cray.o: lapack_cray.f
#       $(FC) $(FFLAGS) $(NOFREE) -c lapack_cray.f

.c.o:
$(CC) $(CFLAGS) -c $*.c
.F.o:
$(CPP)
$(FC) $(FFLAGS) $(FREE) $(INCS) -c $*.f
.F.f:
$(CPP)
.f.o:
$(FC) $(FFLAGS) $(FREE) $(INCS) -c $*.f

C. Compiling VASP

1. Copy the Makefile from makefile.linux_ifc_P4 in the vasp software.

# cp makefile.linux_ifc_P4 Makefile

2. Edit the Makefile

FC (~ line 62)

#-----------------------------------------------------------------------
# fortran compiler and linker
#-----------------------------------------------------------------------
FC=mpif90
# fortran linker
FCL=$(FC) -mkl

FFLAGS (~line 108)

#-----------------------------------------------------------------------
# general fortran flags  (there must a trailing blank on this line)
# byterecl is strictly required for ifc, since otherwise
# the WAVECAR file becomes huge
#-----------------------------------------------------------------------

FFLAGS =  -FR -names lowercase -assume byterecl

BLAS (~ line 149)

# BLAS
# setting -DRPROMU_DGEMV  -DRACCMU_DGEMV in the CPP lines usually speeds up program execution
# BLAS= -Wl,--start-group $(MKL_PATH)/libmkl_intel_lp64.a $(MKL_PATH)/libmkl_intel_thread.a $(MKL_PATH)/libmkl_core.a -Wl,--end-group -lguide
# faster linking and available from at least version 11
BLAS= -mkl=sequential

LAPACK (~ line 158)

# LAPACK from mkl, usually faster and contains scaLAPACK as well
#LAPACK= $(MKL_PATH)/libmkl_intel_lp64.a
LAPACK =

CPP ( ~ line 223)

#-----------------------------------------------------------------------
CPP = $(CPP_) -DMPI -DHOST=\"LinuxIFC\" -DIFC \
-DCACHE_SIZE=4000 -DPGF90 -Davoidalloc -DNGZhalf \
-DMPI_BLOCK=8000 -Duse_collective -DscaLAPACK \
-DRPROMU_DGEMV -DRACCMU_DGEMV

SCALAPACK (~ line 233)

#-----------------------------------------------------------------------
# location of SCALAPACK
# if you do not use SCALAPACK simply leave this section commented out
#-----------------------------------------------------------------------

# usually simplest link in mkl scaLAPACK
BLACS= -lmkl_blacs_openmpi_lp64
SCA= $(MKL_PATH)/libmkl_scalapack_lp64.a $(BLACS)

LIBRARIES (~line 238)

#-----------------------------------------------------------------------
# libraries
#-----------------------------------------------------------------------

LIB = -L../vasp.5.lib -ldmy \
../vasp.5.lib/linpack_double.o \
$(SCA) $(LAPACK) $(BLAS)

Parallel FFT (~ line 246)

#-----------------------------------------------------------------------
# parallel FFT
#-----------------------------------------------------------------------

# FFT: fftmpi.o with fft3dlib of Juergen Furthmueller
FFT3D = fftmpi.o fftmpi_map.o fft3dfurth.o fft3dlib.o

References:

  1. Building VASP* with Intel® MKL and Intel® Compilers
  2. (Intel Developer Zone)

  3. How to Compile VASP on NSC’s Triolith
  4. Installing VASP
  5. How to build VASP-4.6.36 and VASP-5.2.8 on Intel Westmere with Infiniband network